
m‘: +,

1

—.— ..—.

Qilalify \Vcck 1993 S~JrfikcIs & ‘J’i(lci

QUAI ,1’1’>’ WNICK - 1993

SI’ICAK1O<S & ‘J’J’J’J ,1{;S
‘J’l Ic fol]owil]p, lis[s co]]filll]cd sjmakcls scllcdulcd fbl QtIality \Wcl{ 1993, ,3s oftlIc
Clll JC1lt di3t C. li]c.ludrd are]cfj,ula] lm]KIs (a])]}lox. 4S]Ilil]ulcs), sjwcial W]Ilillutc
])]csc]llal ions, l]]vilcd KcyIIotc.I Add] csscs, a]d l/2-day ‘JiIloJ ials. ‘J’llc. lis[is aIIa IIjIc(l
ill fil])llalwtic oIdcI by sj)cakc I IIa IIIC.

l’a]w.Is aIc c.]assifkxi acco]dil][’, 10 tllcil assiy]rd I] firk: (’J’) ildic.atcs tlIc Iccl]l]ic.al
IIack; (A4) i]dic.atcs tlIc IIIa IIajI,CII-ICIIf tIack; (A) indicates II]C a])])lic.atio]ls [lack. III
addilio]), (’Ji][o Jial) il](licatrs H l/?. (l fiyrli]to]i:il filId (Kcylotc) ill(lica[rs IIlvitccl l<ey -
IIotc] A(l(IICSSCS.

() () ()

Soflwtlc I< CSCHICI1, IIlc 1- SaII l]a]]risco, (Ialifc)]I}ia

k .

-. 7

7-A-

L“
L“
‘wb=

-“

7

. .

. -
2-.. .

w

.. . n

>
“R_.

._.

-“

,

Formal Functional ‘rest. Designs with a Wst Representation I,anguage

.Jor]atilarl M. 110})s

Jet Plol~ulsic]rl l,aboratc)]y
Califcjlnia i n s t i t u t e c]f Techrlolocjy

Abstract: ‘1’his article ciisc,usses ttle ap~)licatic)n c)f the Categc)ry–Pa~ titic)n Metllc)d
[5] to the test Clc!siqr] phase. The n[ethc)cl ~)rc)vicics a fc)rr(la] fran[cwc)rk for rcciucing
the tc)tal rlurlrb~r of possible test Cases to a mir)imum lc)qiral suk)set for c,ff~~tive
testing. An automatic tool and a forma]]ar]quage have &erl cievelc)]wci tc) irr[l)lemc,rlt
the methc)d arlcl produce the Specificatic)n of test cases.

Keywords: sc)ftwale t,estirlg, Lest desig!ls, sc)ftware life Cycle, Lestirlg lifecycle,
folmal test- represer]t_atiorl, test s1x2cificatiorls, Category-l)ar titic)rl rnethoct, test
re~,resentation language, TR14.

1. lntrociucti c)n

T}Ic: fc)cus c)f this llaper is hc}w the cateqrc>ly-partit ion rr~ethc)c], a nlethc)ci foz slwci fying
functional tests [5], can be applied tc~ the test cicsign ~}hase of the] test ir~q
lifecycle. Defc)~e ciescribing the metllc)d itself, we need tc) cleal 1 y clef ir]e W}lat the
roc~uircments ar-e fc)r- the test desicjn pliase. This ciiscussic)n car] he fc)urlc] helc)w, irl
SeCtic~rl ?.

Sectiorl 3 centers on some methocis often useci irl the test ciesigrl [)haSC. ~’he caLcgory-
~)altition method is clescrihcci in detail . lrlcludeci in this sectior] is the backgrourtc]
of the method, a step by ste~) Cicscliptic)n of Iiow tc) inl~)lcmerit it, ant] a cic!n(c>nst I-at i c)rl
of the n~ethc)cl applied to a sinl~)]c example.

l’hc suk)sec3uerlt section, Sectic)n 4, int roclLIces tile ‘1’est i%e~)reser]tation l,arlguac]e (TR14) .
I’RI, is a formal language fc)r specifying test ciesigns that have i)eeri createc] with i.hc
c;atcgc)ry–partit ion met-hod anti a cc)r[~~]uter tclol for zrut_omatically generatir)g test cdses
from the formal spec~ficatic)n. T}le exarq)le frc)m Sectic)rl 3 is ~)reserlteci, usirlg tt)e
‘1’RIl folmat .

1’110 cc)llclusic)r)s in Section 5 ~)l-oviclc sc)me irlsight intc) the results Lhat have k)eerl
acllievedr and some suggestions fc)~- further study arid dt~ta CO]]C’CtiO1l that r((ay ii<!
r]ecessary to assess the Corltlihutic)n c,f the ‘l’l{l, tool cic!vc’lcl~lc!d ancl the categc)ry -
pa~titiorl method used.

?. F’rok)lem I)efinition

2.1 Testing I,ife Cycle

in the field of software engineering, we are! c)ften faccci with the c-hallerlqe clf
c~cating an integrated, working system based on inadequate ancl n(eager requirer,,er,ts.
The waterfall lifecycle for software clevelc)pmerlt - where Ioqui rements al e
systematically refined, architectural anti cietai] clesign est:ihlished, cc)cle wl itten,
ancl then the system testecir has lwcorrle an aec-e~)ted nmtllc)c] fc)r clealirlg with tile
ant)iguities arid vaguerless c)f the c)ligirla] rcc~ui rer[~erits. l’he testing ~)c)rtic)n c)f this
clevelc)pment lifecycle, howevel-, is not so clearly dc!fined c)r wiciely acccpteci.

P’igure ?-1 ciepicts the testing]if.s! cycle LISC!C] irl Sc)nlc, of the clevelo~)ment ~)loj~cts at
~let Propulsion l,aborator-y, c)peratc!ci fc)r NASA hy the! California]rlSLitLltC c)f
11’echno]ogy . This life cycle is described in JI’1,’s Software Marlac~en~erlt Star]clarci, I)-
4000 [2] , and is sin(i]ar to the softwa]-e clevelc)~muer]t standard acl[~pted by the,
[)epartn(erl~ of Defense, IJCII)-Sl’D-?16”/A [3] . Table 2-1 ciefir)es ttle EICXO1lyIl\S used ir~
Figure 2-1, along with the title c)f the cic)cun(cnt it stancls fol-, the phase irl t})e
testing lifecycle during which it is L]SCC1 c)r p~c)ciuced, arid finally, whether a
clescri~>t-ioxl of its c.onter)ts is in the Stanclalcis [?] anti [3] .

JM}l - 1

. . .

Figure 2-1 Testing Life Cycle

I 1
TIP ~ ● TEST PLANNING ~ wPA/wlP
SMP h

‘TEsT MANA GEMENT PLAN

FRD ~—- - ‘“— – --—— --- ,
FDD -—j TEST REQUIREMENTS ANALYSIS . SSITP-1
SRD ~- STP-1.J

SSD- 1
v

SSD-2 . ‘SSITP T E S T D E S I G N S
PSOM

—— -– --— – –. —-–— —.- — ._

SOA4 ----+ TEST SPECIFICATION
— —-—

RDD
CODE

TEST EXECUTION * PFRIAR
. . . — _ —— . _ _ . . .—

- ‘STP TEST DESIGNS

v.. ,

* SS!TP-2
STP-2

.._Y- — ---

—— .— ___ __ 3

‘TEST ANAL YSIS SSITP-3
—— _ _ — STP-3.

LEGEND: D-4000 iNPUT D-4000 PHASE OR OUTPUT ‘PHASE OR OUTPUT NOT DEFINED IN D-4000

.

Table ?-1 Testinc

D-4000

TIP— —.—. .- .—

SMP— .—— — . .——

WPA/WIP

—.— —... ---

Test
Management
Plan

E’RD

F’L)L)

SRD

SSITP-1

STF’-1

_.

SSD-1

SSD-2

—.. —-.—..

PSOM

SSITP Test
Designs

STP Test
Designs—- .- —_______

S OM .—..

SSITP-2

.—

S1’E’-2

RDD-..

PFR/AR

SSITP-3

——-——————___

STL’- 3,. —.. .. ——. —_—.

JPL’ s So ftwa Xe Management
Standard .- —

Task implementation Plan

Software Management Plan—.— —— ..—

Work Package Agreement/ Work
implementation Plan.—

T’est Management Plan for
ciefining procedures of complete
testing cycle

E’unctional Requirements
Document

Functional Design Document

.-
Software Requirements Document

SubSystem Integration anti Test
Plan - 1 , requi rernents

Software ‘rest Plan -1,
requi rements

Software Specification L)c)cument
-1, architectural design—.

Soft-ware Specification l)ocurnent
-2, cietail desigrl-—.. .-

Preliminary Software Operator’s
Manual

SubSystem Integration and Test
Plan - Test Designs for SSITP-1

Software Test Plan - Test
Designs for STP-1. .——.

Software Operator’s Manual——

SubSystem Integration and Test
Plan -2, detailc!ci proceciules———— .- —--

Software Test Plan -2, cietailed
procedures——————— ..—

Release Description L)ocument—- ..—— . .—.

Problem Failure ReL,c)rL/ Anc)ma]y
Report

SubSystem]ntegratic)n and Test
Plan -3, report

Software ‘rest Plan -3, reF)ort-

all

l’est P]anning

Test Requirements
Analysis —.

Test Requirements
Analysis

Test Requiremeni_s
Analysis

Test RecIuirements’
Analysis

Tc!st I@quirement_s
Analysis ..—

Test Design

..-——.
Test- Design

Test L)esign

Test Design

Test Design

lest Specification

Test Analysis

.—
Standards

.,, ,, ..,,

yes

yc!s

yes

YC! S

no

yc!s

yes

yes

y(!s

yes

yes

n o

no

yes

yes

yc! s

yes

yc?s

yc!s

yes

JMH - 3

JMfl 4

3.1 l’est Desjgrl Methc)cis

There are many ways to create test clesjgns that rnect the nc!ec]s of a certairl project .
Four of these methods are discussed below: the representative set method, the ad–hoc
method, the all.-permutations methoci, and finally Lhc category-partition method.

A common method for determining the number and contents of the test designs and test
cases that should be transformed jnto test procedures is selecting a representative
set of no~ma] conditions and parameters that prove that the
requirements .

systen(works and meet:;
On a project using this methc)cl, the ernphasjs will be on dernorlstrat_ing

that the system works rathel- than testing the system to cletect failures, but the
repeatability of the test procedures and the traceability to the requirements hejng
tested is generally good.

On projects that are particularly sho~-t of time, money, and personnel, the test
clesign phase is almost totally skipped. In this case, the test design method can k)e
characterized as ad-hoc. The ad-hoc test case selection is particularly prone to
missing important aspects of the system behavior that coulci help determine where the
problems are. The ernphasjs on a project using this method is almost always on
getting the system “out-the-door”. Traceability to requirements is often poor. And
most devastating of all, test repeatability is sacrificed; when a failure eventually
occurs and the problem solved, it is ve~-y difficult to verify that the fix was
correct because the conditions that caused the failure cannc)t be repeat-eci.

Though not often seen, another method for selecting test designs and cases is a brute
force method of analyzing all permutations of system parameter values. With this
method, the test designs and cases are easily traced to requirements and test
objectives, but it takes a lot of time arici effort to analyze each permutation and
decide which ones are valid and which ones are meaningless. ‘1’his rncthod allows the
test engineer to find test cases that lie on the extreme boundary of the valid input
space, and therefore is good for error detectjon.

A recommended method for determining test designs is the category-partition method
[5] . This method combines the benefits of choosing norr[(al cases with the error
exposing properties of the all-permutations method. Traceability can be maintained
quite easily by creating a test design for each test objective in the test plan.
LJsing an automatic tool to create the test cases based on the test design, the
subsequent effort to transform the test cases into test p~-oceciures is simplified.
The method allows the rapid elimination of undesired test cases from consideration,
and easy review of test designs by peer groups.

Section 3.2 discusses the category-partition method in general, and is followed by
sect,ion 4 which presents the Test Representation l,anguage (TRI,) that can be used to
implement the method and produce the test cases using the ‘I’RI, tool .

3.2 Category-Partition Method

3.2.1 Background

‘1’he category-partition method was first presented by Ostrand and Balcer in 1988 [5] .
A follow-on paper in 1989 [1] discussed a test specification language anti a tool for
the automatic generation of test scripts that could be compiled and executed in the
teSt environment that they had set LIp at Sicxnens corporate Research. As pointed out
in these two papers, the category-partition method is a way of analyzing the
functional and software requirements of a system in c)rcier to determine test cases LC)
be run. The method relies exclusively c)n the test- engineers’ reading of the
requirements and design documents and their judgement of exactly which test cases
should be selected for procedure development. lf a formal requirements specification
language is used to document the requirements and design, other methods may be more
useful, such as the ones described in the pa~)er by Richardson, et. al. [6]. Ilowever,
it is not often that the test engineer is presented with a functional recluiremcnts
document or a software requirements document that is written this fc)rmally.
Therefore, a stl-uctured method, such as the category–partition method, is rleedcc~ t_cI
provide a systematic approach to developing test specifications from informal
representations of the required system behavic)r,

JMH - 5

The following sections discuss tile steps in the categc)ry-~>tirtitiorl ncthcjci. The
have been organized differc?nt]y than the prc)ceciure discussed in the prir[~~i~y

St c!ps

references, [5] and [1]. The organization of steps presented belc)w has ~)roven useful
in communicating the method to the test engineers on our ~)rojects.

3.2.2 Steps in the Category-Partition Method

‘1’he ca~egory-partition method consists of fou~- steps:
1
2
3
4

Each of

3 . 2 . 2 . 1

E’unctional Decomposition;
Category Analysis;
Partition Value Analysis; and
Partition Constraint Analysis.

these steps are discussed in the following sections.

Step 1: Functional Decomposition

The first step in the category–partition method is functional ciecomposition. l’he
purpose of this step is to decompose the specification and/or recluirer(~erlts into
functional units that can be tested indepenciently. A secondary purpose c)f this step
is to identify the parameters that affect the behavior of the system for each
functional unit.

The requirement space is subdivided into subgroups, which may or may not overlap .in
some aspect. llach subgroup clearly identifies the requirements being tested and the”
input, output, and environmcrltal parameters that affect how the system meets the
requirements . The types of parameters that should be considered are: user inputs,
inputs from external interfaces, erlvironmental inputs, outputs to another
(observable) portion of the system, outputs to a user or external interface, outputs
to the environment or state of the system, or maybe even the sequence of events.
Note that there will be t,imes when some of the parameters are not explicitly stated
in the requirements specification, and therefore implicit parameters will klave to he
determined.

For an example, assume the following requirement specification has been decomposed
from the requirement space:

Sort an integer array either in ascending or descending order,

The parameters mentioned explicitly in this requirernents statement are the array, and
an indication of sort order. lmplicit]y, however, the result of the sort operation
is also a parameter for this requirement.

The next step of t,he procedure is to further- analyze the parameters identified arid
determine the characteristics, or categories, of the parameters that affect program
or system execution.

3.2.2.2 Step 2: Category Analysis

The second step in the category-partition rr~cthod is category analysis. The work done
in the previous step, identifying functions] units and explicit and implicit
parameters, is carried further by determining the properties or sub-properties of the
parameters that would make the system behave in different_ ways. ‘1’he test engineer
should analyze the requirements and determine the features or categories of each
parameter and how the system may behave if the category were to vary its value. :[f
the parameter undergoing refinement were a data–item, then categories of this data-
item may be any of its attributes, such as type, s i z e , value, units, frequency of
change, or source.

Choosing the “array” from the exanple in st-ep 1 for further refinement, the
categories that may be derived from the specification are “array size”, “the values
i.n the array”, and, because the functional unit is a sc)rting function, “the
arrangement of the values in the array” .

As can be seen, the original requirerr~ent statement saici nothing about the valici range

JMH - 6

of “array size”. This step, along with the next one, tend tc~ pc)int C)LIL C]eficiC!tl~iC!s
in the requirements specification. The test, engineer will have LO wo~k closely with
the author of the requirements and the designers in order to resolve the arrbiguities
and uncertainties that surface from this analysis.

3 . 2 . ? . 3 Step 3: Partition Value Analysis

After all the categories for the pararr~eters of the functional unit have been
determined, the next. step is to partition each category’s range space into rr~utually
exclusive values that the category can assume. In choosing partition values, the
focus should be on error exposing values. I’he discLlssion on boundary value testing
in Myers’ book [4], and revealing subdomains in the paper by Weyuker and Ostrand [-/1
should prove useful as references.

‘The partition values should include all possible kinds of values, especially the ones
that will maximize error detection. Important values to look for are boundary
values, extremal and non-extremal values, values that represent special cases or
interactions, and valid arici invalid values.

Returning to the example and using the category “array size” for illustration, Llle
five partition values are:

1) o
2) 1
3) 2 to the Upper Bound minus 1

Upper Bound
3 greater than the Upper Bound

It can be seen that “O” and “greater than the Upper Bound” represen~ error conditions
that the sort. function will have to process, while “l”, and “Upper Bound” represent
special cases or boundary values. The reason the all the values between “2” and the
“Upper Bound minus 1“ (inclusive) have been grouped together is because the sorting
function is expected to behave the same in this range; an error in procc!ssing that
occurs for a particular value in this range should occur for all the values in ttl.is
range . It is left up to the Test Specification Phase of the testing lifecycle to
determine the exact, or randc)m, values that shoulci be used to verify this partition
in the test procedure.

‘1’he fact that two of the five values in this exartple have already been identified as
being representative of error conditions gives us a head start on the next step of
the category-partition method.

3.2.2.4 Step 4: Partition Const~-aint Analysis

The purpose of this final step is to refine the test design specification SC) that
only the technically effective and econorilically feasible test cases are implied.
There are three types of constraints defined in the category partiticn r[~ethod as
described in [5]: Errors, I,imits, and Conditions.

An Error Constraint applied to a partition value is used to indicate that the
partition value represents an exception state that the system under test should not-e
and report without processing any further. partition values of this type need to be
tested in one test case but no more, due tc) the way exceptions are usually handled.
An example of partition values that should have Error Constraints are “O” and
“greater than the Upper Bound” in the category of “array size”.

A I,imit Constraint is for limiting the nunk)er of times a partition vaLlue will be used
in the resulting test cases. I,imit Constraints can be applied to a test design in
order to control the actual number of test cases implied. When econc)mic feasibility,
as in restricted time and resources, is a factor in the test executic)n, the I,imit
Constraint will help the teSt engineer to eliminate SOIW2 of the test cases that seem
redundant. In the example we have been following, the test engineer may want to
limit the number of times that an “array size” of “Upper Bound” is used.

The remaining type of constraint is the Conditional Corlstraint. Deterrr~ining these
types of constraints is where the rrmjority of the intellectual] effort is spent. ‘Thi s

JMFl - ‘1

part of the analysis specifies which partition values from one cat-egory can be used
with the partition values of another category. Conditic)nal Constraints are specified
in pairs: pre-conditions and post-conditions. E’re–conditions are states or
conditions that must co-occur for a particular partition value to be used in a test
case; post-conditions are the states or conditions that are set when a paltition
value is used. To illustrate their use, a slightly more involved example should be
discussed.

Starting with the category of “array size” and the partitions determined in the
previous step, we analyze the types of conditions that are expressed by each
partition value. It can be seen that the values represent 3 separate conditions:

a) “error occurs” (for partition values of ‘IO” and “greater than upper
Bound”) ;

b) “size is normal” (for partition values of “2 to Upper Bound minus 1“ and
for “Upper Bound”); ar,d

c) “size represents a degenerate array” (for an ax-ray size of “l”) .

Clearly, if evez-ything else is set appropriately, the valid partition values of the
category “result” will be dependent on these conditions. Ilet’s assume the fOllOWiIICJ

4 partition values were identified in Step 3 for the “result” category: “error
notification”, “array unchanged”, “array in ascending order”, and “array in
descending order”. A pre-condition for the result “error notification” is that the
post-condition “error occurs” has been set. I-’or the values of “array in ascending
order” and “array in descending order” the post-condition of “size is normal” must,
have been set before these values could be used in a valid test case. The “result.”
of “array unchanged” could possibly be a result of many conditions, one of which js
that the “array size” is “1”, where the “size represents a degenerate array”.

3.2.3 Example Application of Category-Partition Method

Table 3-1 provides the results of the method applied to the example that has been
discussed Throughout the previous sections of this article.

JMH - 8

-4
L)
al
Q

:
.4
In

a

——

—

—.

.
(

I
(
I

(
.,

(
I

.,
(
:

[
k

—

r
(
1

.,
4
I

‘1
-,

(
(

r
(

E
[
c

..-

(
1
(
I

{

(

4

~

(

(
[

;
4

.
r
(

—

.
1

I
(
I

1
-,

(
I

.,
(

[
b
—

.
1
(

.,
4
I

;
.!

4
(
I

E
1
c
—

(
(

.
(

(

.,
4
-,

(
(
{

.

.
(

;
ml
u
4)
.
c:

‘8
—.

. ——

)1 5. resu~t error notification 1
I 1?? “error occurs” /

II I I I {

I 1! axray in ascending order ~ IF ‘*ascending order” I
I I .

4. Test Representation Language (l’RI,)

l’he Test Representation Language (l’RIl) was developed to in,plernent the category-
parti.tion method. When used during the ‘lest Design E’base of the testing lifecycle,
the TRL files will form concise and uniform I-epresentations of the test designs for
the functional testing of the system.

The TRL tool that implements the TRI, language processes the ASCII formatted TRI, files
and produces ASCII formatted resulL files that document the individual test cases
implied by the test design. The TRI, tool documents the description, categories, and
partition values to be used in each test case. Each TRL, file is created and modified
with an ASCII editor and therefore can be easily modified to adapt to changes in
functional specifications. The resulting test case descriptions can be used du~-ing
engineering tests of the system under test to verify preliminary procedures and
functions while work continues in the Test Specification E’base, transforming the test
case descriptions into formal detailed test procedures.

The ‘1’RL tool was written in the “C” programming language and can be ported to any
platform; the SUN/SPARC and DOS environments are the computer platforms on which it
currently runs. This tool differs from the one described in reference [1], in that
the TRI, tool is a general permutation control language that can be used in any
environment; the output of TRI, the tool. is ASCII files that can be used for
documentation rather than an executable test script.

4.1 ‘l’RI, I,anguage Definition

The Test Representation I,anguage (TRI,) provides a way to describe many test cases
with one TRL File. The language consists of 1 conmlent character, 11 keywords, 2
field dernarkation characters, a logical AND character, and a logical NOT’ character.
The processing rules for the keywords, comments, and fields appears in the follow:~ng
sections and a summary of the Test Representation Language appears in Figures 4-1.

4.1.1 Special Characters

There are five special characters in ‘1’RI, character set:
1) comment character = asterisk (*) ;
2) start field character = open bracket ([) ;
3) end field character = close bracket (1) ;
4) logical AND character = comma (,); and
5) logical NOT character = exclamation point (!) .

The asterisk is for initiating a corrment_ line, which is a line defined by the comment
character appearing as t-he first non-white-space character on a line in the TRI, fi le.

‘The start field character and end field character are for specifying the beginning
and ending of a partition constraint field. Partition constraint fields are
discussed in detail in section 4.1.3.

The logical AND character and the logical NOT character are for specifying logical
relation inside a partition value constraint field that is used for setting
conditional constraints. See section 4.1 .3.1 and 4.1 .3.? for examples of their use

4.1.2 Line Keywords

There are two types of keywords in the ‘lest Representatic)n I,anguage: line-keywords
and field-keywords. To be recognized as valid, the line-keywords should be the first
word on a line. These keywords are used Lo initiate a description of t_he test_
designs (DESCRIPTION), indicate the beginning of the categories and partitions
(PARAMEITFRS), indicate a certain type of category (TYPE;) , specify the name of a
category (NAM13), set error message text (MKSSAGF:), and to indicate the start of the
block that describes the partition value and constrains of each category (SAMPI,KS) .
The line-keywords al-e, respectively:

DESCRIPTION, PAP.AMiiTERS, TYPE:, NAMK, SAMEJI)E:S, MRSSAGF;.

JMH - 11

Figure 4-1 Test Representation I,anguage (TR1,) Sur[u,,a~-y

Character or Keyword

*

DESCRIPTION

PARAMETERS

NAME

TYPE

SAMPLES

[

1’
IF

SET

LIMIT m

LABEL

ERROR n

MESSAGE n

Command Line Options

BJJPo.se _and/.o_usQ.ge

Indicates a comment line.

Indicates the starting of a description block
that will be included in test cases.

Indicates the beginning of parameter
specifications.

Specifies the name of a parameter or category.

Indicates the type of category.

Indicates beginning of a samples block
defining the partition values and constraints,

Beginning of sample value constraint field.

End of sample value constraint field.

Field identifier indicating that pre-condition
constraints are listed in the current field.
Comma (,) is used for logical AND, exclamation
(!) for logical NOT.

Field identifier indicating that post-condition
constraints are listed in the current field.

Field identifier indicating that the number of
test cases involving this partition value should
be limited to m. If m is unspecified, the limit is
one test case.

Field identifier indicating that the specified
label should be listed for this partition value.

Field identifier indicating that the sample value
is an error exit. The error can be specified
using the optional n.

Indicates that a message block follows
corresponding to the errors in the partition
values. The message number can be specified
using the optional n.

For performing “count only, ” writing results
into separate files, and for including pre/post
conditions in output.

JMH - 12

4 .1.2.1 DESCRIF’!I’1ON KC!yWO1”Ci

The purpose of the DESCRIPTION keyword is to indicate the start of a descriptic)n
block . The description block will be printed at the top of each test case results
file. It is recommended that this contain the requirements that the TRI, File
addresses, the TRI, file name, author, date, and a description of the general t,est
set .

The description block starts at the first non-comment line following the DESCRIPTION
keyword; the block ends at the first comment. line or keyword line after the
description block has been started. lt may contain blank lines but no keyworci lines
or comment lines.

If no DESCRIPTION keyword is found in the ‘1’Rl, file before the PARAMETERS keyword, or
there was no description block then the default description, which is Lhe name of the
TRL file that contains the test design, will be printed at the LC>P of each test case
results file.

Example 1:
I)F;SCRIP1’ION

A
i

Requirements: 1.1, l.?, 1.3
TRL F’ile: electrical environment.TRIl
(results in file: electrical erl~ircJrm~ent. RFS)

Last Modified: 5/5/91

* This comment line ends the block

Example 2:
DESCR1PTION
* empty description
PARAMETERS

4.1.2.2 PARAMETERS Keyword

‘l’he purpose of the PARAMMTKRS keyword is to identify the beginning of the test
representation and the corresponding categories and partitions. It_ must appeal-
bcfore all of the line-keywords, except DF:SCRIPTION. It can only appear once in the
‘1’RII file. All other keyworcis must appear after PARAME:l’F;RS in TRI, F’i]e.

Example 1 :
+
PARAMETERS
A

4.1.2.3 TYPE Keyword

‘I’he purpose of the TYPE keyword is to set the current type of the subsequent
parameters and categories. The type assc)ciateci with each ~mrameter is printeci alc)ng
with Lhe partition values in the test case files. The TYPF; keyword must be followed
by the new default type specification on the same line. The specification can have
alpha-numeric characters, embedded spaces, and punctuation characters.

If there is no specification (i.e. only white-space appears after the TYPE: kcywc)rd) ,
then the previous TYPE setting will be used. The default TYPE setting is
“Parameter” .

Example 1:
TYPE Input Paramctel

JMFI - 13

Examples 2, 3, 4, and 5:
1’YE’F Output Parameter
TYPE State Parar(~eter-
TYPL’ Environment Parameter
TYPE

4 .1.2.4 NAM’r; keyword

‘l’he purpose of the NAME keyword is to set the name of the current parameter or
category. ‘l’he NAME parameter indicates the beginning of a new category
specification. The category specification consists of a NAME; setting and the samp
01- partition values associated with it as initiated by the SAMPIJ:S keywc)rci.

The NAME keyword must be followed by the name specificatic)n on the same line. T’he
specification can have alpha-numeric character, embedded spaces, and punctuation
characters . If there is no name specification (i.e. only white-space appears afte
the NAME keyword), then the default parameter name is used.

If there are no san~p]es follc)wing the NAME: keyword line prior t-c) the encl-of-fi]e or
the next NAME: keyword line, then T.RI, processing stops.

See the SAMPI,I?S keyword description, section 4.1 .2.5, for information on SAMPI,RS.

Iixarnple 1 :
A
NAMF: sort ordex-
+.
SAMPIIF:S
. . .

Example 2:
NAMR Anything can follow this (even punctuation. !)
SAMPIIES
. . .

4.1.2.5 SAMPL13S Keyword

As nmntioned above, the category specification consists of a NAMIz setting and the
samples or partition values associateci with it as initiated by the SAME’I,E:S keyword.
‘1’his keyword begins the processing of the partition values and the partition value
constraints for the category indicated by the NAMR keyword.

The associated partition value block stalts with the next non-comment line anti f!nds
with the subsequent blank line, corrumnt line, or a line with arlc)~her keyword
Arl empty block will cause T’RI, processing to stop.

I)etails of the ~)artition value constraint analysis can be found in the descr
Of the SET, IF, 15RROR, I,IMIT, and LAFiE:I, keywords, in section 4.I .3.

In order to be recognized properly as ~)artition value text, the pa~titic)rl va
cannot start with the conuf~ent character , ,,*,, and cannot contain any start (
field characte~s, “[” or “]”.

I

es

on it.

ptic)ns

ue text
r end

Example 1 :
i
NAMF: sort- order
*
SAMPIES
+ 3 samples fc)r “sort c,rcier”
*

JMH - 14

ascenc]i rig
descencii]nq
don’t caIe

* (this comment line er,cis the value line block)

E:xamp]e 2:
NAME Anything can fc)llc)w Lhis (even pur!ctuation. !)
SAMPI,ES

1
2
3

* (the blank line, above, ends the value line block)

4.1.2.6 MESSAGE; Keyworci

The MESSAGE keyword is used to start the processing of a message block of lines. I’he
messages in the message blocks are printed when a partition value is used in a test
case that has an ERROR inciication.

The format used for the Message Keyword is: MRSSAGE n. The opt.ic)nal “n” is either
blank or an integer. ‘I’he MIZSSAGF keyword indicates that the next line or lines
should be entered in the “n”th position of the erlor message list . If “n” is
unspecified, then the next available message number will be assigned.

The message block itself starts on the line followirlg the line with the MRSSAGK
keyword on it, and is terminated by a blank line, conmlent line, the end of the file,
or a line with another keyword.

No special processing for the message line is performed beyond keeping track c)f the
error message list and its associated numbers.

Example 1:

*
MESSAGK

Error message nuntmr is the (next_ available)
Error message number is the (next availab]e)+l

i
* the comment line above terminates n(essage processing

‘Lxample 2:
i
MMSSAGE 6

Error
Error
Krror

message #6
message #“i
message #8

* blank line Lerminatecl the message processing.

4.1.3 k’ielci Keywords

The field keywords are used in the partition value constraint fields to either
describe a partition value (ltAR~I,), or tc) specify the cc)nstraints determined ciuring
Step 4 of t_he category-partition r[lc!thc)d. I’lle fielci-keywc)rds fc,l setting labels anti
constraints are:

SIIT, IF, I,IMIT, E;RROR, and I,ARRI,.

A partition value constraint fielci is :issc)ciated with a particular partition value by
its physical location in the partition v:ilLIe block. A line in Lhis blc)ck consists of
the partition value text followed by zero c)r rnc)re cc)nstlaint fields. The constraint
fields can extend beyond the physical line c)f the TRII file, but t-he partition valUe
text cannot. Partition value constraint ficlcis are started k)y the start field
characters, “[”, and ended by the end fielci characters, “]”.

JMH - 15

.

As p~-evjcjusly mentjc)ned, part itic)n value text cdnriot St al-t wi Lll tll~ cor[u[[~r,t
charact. cr, ,, *,, t anti canrlc)t contair) any start c)r end field characters, !![!(~), !l] !,.

The field keywords are described irl the following subscctior]s.

4.1.3.1 Si3T Keyword

Thc purpose of the SET field keyword is to set. post–conditions. As explained in
section 3.2.2.4, post-conditions (and pre-conditions) arise during the partitiorl
constraint analysis step of the category-partition method. E’or a particular
parLition valuer the post-conditions specified ir) the SR1’ field will be set if the
part_jtion value is used irl a test case. A corresponding pre-cc)ndition, as deterrrlined
by an IF fjeld, is used to control which partition values from different categories
are validly used together in a Lest case.

The SIST keyword must be the first word fc>llowing the “[” character. The
post-conditions themselves are one or more words that can consist of alphanumeric
characte>-s plus t r , 0 1“ t-t The SIIT fielcl is tel-r{{inatc!d k~y a “]” c)r the c!nd of the—.
line.

The logical ANL) character, a cc)nrna “,”, shc>u]d sc~~arate post-conciitions when mc)re
than one post-condition will be set.

Example 1:
i
NAME; sc)rt c)rder
*
SAME’ l,E; S

3 sarrples for “sort order”

ascendjng [IE’ size ok, ruin rnax]
[SE:l’ ascend, nc~ri,[al]

descending [IF” size ok, mi n max]
[SKY clescer,~l, normal]

cic)n’t care [Ii?’ !nc,rrr,al]
[SE;l’ dorlt_care]

i?XPIIANAIIC)N:

‘1’he “ascenciing” anti “c]escenciing” values will &
used c)nly when the post_- corlditiorls “size ok” arlci
“rnin max” have been SET by the use of other partitic)n
valu-es.
The use of “ascending” wi 11 SET the “ascend” anti
“nc)rmal “ pc)st-conciitions . The use of “descending”
will SET the “descend” and “norn~al “ post-
conditions.

The “dc)n’t care” value will c)nly be used if the
post-condition “nor-ma]” is NC)T’ SR1 by any c)ther
sample value. When valici, the use of this partitiorl
value will SF;T the “cic)rlt Care” post-cc)nditiorl.

4.1.3.2 IF Keyworci

The purpose of the IF field keyword is to set a pre-conclition for the use of the
associated partitic)rr value. The IF’ keyword rrlust be the first wc)rd following the “[”
character . The pre-conditions themselves :ire one or more words that can consist of
alphanumeric character plus ‘ r , c) r l_f Thc! IF’ field is terrnirlated by a “]”.

The]ogjcal ANI) charactez, a conma “,”, can be used tc) separate a corlclit_ic)rl when
multiple pre-conditions are Ilecessary l.wforc a partitic)n value can be used irl a test
case .

JMI1 - 16

‘l’he logical NOT charzicter, an exc]arrmtion point “ !“, can precede a prc-cc)nclitic)n to
indicate that a particu]al lJrc-cc>r]ciitioll carirlc>t exist if the ~>artitjorl value is Lo k)c
used in a test. case.

The partition value text wii] C)n]y be LIseci irl a resu]tirlg tc!st case if tile pre-
conditions specified in the 1P’ field are n~et by the pc)st cc)nciitic~ns that are set
(usir,g the SET field keyword) by the c)ther values in the resultil,g test case.

Etxamp] c 1 :
+
NAME sort order
i
SAMPLES
* 3 sanples fc)r “sort orcier”
*

ascending [IE’ size ok, rnin-rnax]
descending [IF’ size ok, rr~in max]
cion’t care [IF” !norr(&l] -

i
A RXE’I,ANATION:
4
k the “ascenciing” anti “descending” values will be
* used only when the post-conciitions “size c)k” and
* “rein max” have been SKT in other sarri~~le ~alues.
* ‘rhe “don’t care” value will c)nly he used if the
* post-condition “I]ormal” is NO1’ SE:’I’ by any other-
* sample value.
A

4.1.3.3 I,IMI’I’ Keyword

‘1’he I,imit field keyword is useci to set a linlit or) the nuntler of test cases in which
the associated pa~-tition value can be useci. The fc)rr[(at of the fie]ci whc!n l,lM1’1’ is
used is: [LIMIT n], where “n” is either blank c)r an irlteger-. If “n” is specifiec]
then a maximum of this number c)f iterations will L)e allc)weci to be useci in tile
resulting test cases. The number “II” starts with the first numeric after the I,IMII’
keywor-d and ends with the fi]-st nc)n-nur[~eric fc)llc)wir]g that .

The I,IMIT keyword must be the first worci fc,llowillg the “[” character. l’he IIIMII’
keyword indicates that the current partitiorl value is limitcci to the nul[k)er C)f
specified iterations, where “n” is the rnaximur[~. If “n” is not specified then “n” is
assumed to be one. ‘l’he I,lMIT field is Lerminateci by a “]”.

Examp]e 1 :
A
NAMR sort orcler
i
SAMPI,KS
* 3 samples fc)r “sort order”
*

ascending [l’r’ size ok, mir,max]
[SF;T ascend, r,orma]]
[IIMII’ 10]

descending [IF’ size ok, mi n rnax]
[SE:l descenli, nc>r-rnal]

don’t care [IF’ !r,orma]]
[SF;’1’ dent-care]

*
*
* E:XPI,ANA’I’ION:
*
* The ‘Ascending” ancl “ciescenciing” v?ilues will be
* used only when tllc ~lcJst-cclrlditic>lns “size cjk” ancl
i “mi n n~ax” have been set (using tile SET f~eld keywc)rcl)
* by o~her categc)xies irl ttle test design.

JM}l - 1-/

* L1’he USC! C)f “ascenciiz]q” wi 11 SF:’I’ tile “ascend” AT)(I
i “nornml “ l,CJst-c(]rlciitjorls. The “ascending”
* partition value wi.1.l be used a maximum of 10 times.
A
* The use of “ciescenciing” wil 1 SF:T the “descend”
* and “rlormal pcjst-corlcii tiorl.s. There is no LIMIT
* on the number of times the “descending” partition
* value can be used in the test cases.
k
* The “cion’t care” value will only be used if the
* post-condition “normal” is NOT S’FT by any other
* sam~)]e value; it’ s use wi 11 SI-:T the dc~nt care
* post-condition. There is no LIMIT
* on the number of times the “don’t care” partition
* value can be used in the test cases.
A

4.1.3.4 RRRC)R Keyword

‘1’hc purpose of the E:RROK field keyworci is to inciicate i-hat the curlc!rlt F)artitic)rl
value rep~c!sents an error condition. l’he partit ion val ue, therefore will c)rlly km
included one time in the resulting test cases. The ERROR keyword nwst be the first
wo]-d following the “[” character. The E:RRCIR keywc)rd indicates that the current
partition value shoulci raise ar) exception in the system under test and a specific
errol message should be observable.

The format of the field when FRROR is specified is: F,RROR n. The o~>tior]al “n” is
either blank or an integer. If “I]” is specifieci then the “n”th message in the error
message list will be printed alonq with the use of this partition value! in a test
case . The message list is deterrrl~ned by the MKSSAC;K keywc)rci, as ciescritwci in section
4.1.2.6.

The number- “n” starts with the first numeric after the KRROR field keywc)rci anti ends
with the fizst rlon-numeric following that. If “n” is not specified, then tile errors
will be numbered as they are encc)urltered ir] tile 1’R1, fi le.

E:xamp]e 1:
i
NAME SC)lL oI-dc!r
*
SAME’l,F:S
A 4 samples fol “sc>rt order”
*

ascenciing [IF’ sire-c)k, n,in-m ax]
[SET ascend, nc)rma]]
[I,IMI’I’ JO]

descending [IF’ size ok, min n(dx]
[SE:~’ desccn~, r]cjrrnall

unspc!ci fied [IE’ all- r,oxrc~al]
[SF;T’ dollt-c~~-e]
[F:EWOR 5]

cion’ t care [IF’ !norma]]
[SF:l’ Clorit- care]

+
MKSSAGE: 5

Error Message #5: sc)rt cjlcler was nc)t set
*
A
* KXPLANATION:
i
* The “ascending” and “dcscerlc]ing” values wi 11 bc
* used only when the post_- corlciitions “size ok” and
* “mi n max” have been SE:T by the use of an&thel-
* part;tic>rl value in a ciiffel-erlt ctitegc)ry.
* The use of “ascencli rig” will SF:T the “ascenci” and

i “r]orr(~aJ “ ~)ost-corldit iclrls . Also, the “ascerlc ii rlcl”
* Szlrn[)lcl Vdluc! wi 1 1 i)e usecl d maxir(~ur(l of 10 t irlles.
+
A ‘1’he use of “ciescendiny” will SF,T the “ciescend”
* and “nc)rnlal pc)st--conciitions . There is no I,lMIT
* on the numlwr of times the “dcsccnciing” sample
* value! can be LIsccl irl the test cases.
*
i ~!he “unspecifieci” par-Litiorl value wi]l be used in a
* test case cjnly if the “all normal” post-conciitions
* was set. The “uns~.,ecified;’ partition value will c)nly
* be used once and the 5th errc)r- message in the error
i message list will hc printed when this partitiorl
* value is used. The “cic)rlt care” post condition will he
* set .
*
* The “don’t care” value will only km used if tho
* post-condition “llorr((al” is NOT SEiT by the use of
i another partition value; if “don’t care” is used, t hen
* the dent car-e post-collciition will get SF:T.
* ‘I’here is- no I,lMI’I’ on the nurnbcr
* of times the “cic)rl’ t care” sar[ple value can be LIseci
* in the test cases.
A

4.1.3.5 l,AHR1, Keywc)rd

The purpose of the l,AEW:I, field kc:ywclrd is to indicate that the associated partition
value should be labeled with the s~)eci fiecl text when it is LIseci in a rc!sultirlg test
case . The format of the field whc!rl I,AliF:I, is useci is: [I,ABF:I, labe] text], where
label text is any string of characters exccl)L “]”.

Tile I,AIIE;I) keywo~d must be the first wclrd following the “[” character. l’he I,AF{KI,
keywc>rd indicates that the fc)llc,wing label- text is the label for t-he current
partition value. If “label text” is specified then the “]abcl text” will km printecl
along with the use of this -sample. in a test case. C)i. herwi se;, tic default labc>l
“va]ici” will he LIseci.

Rxarr~l)le 1 :
i,
NAME; sort orclcr
i
SAMP1,F:S
* 4 sanp]es fcjr “sort c~rdcr”
*

ascc!ncli rig

dcscenciing

Urlspecified

[IE’ siz.e_ ok, r{lin-r,lax]
[SF:T ascend, normal]
[IIMIT 10]
[I,AE{F:II valid sort order]

1 F“ si~c c)k, rrlirl nkix]
[SF:i’ desccn<i, norrr~al]
[IAE{F:I va]icl so~t c,~cier]

IF’ all. normal]
[SF,T’ cic)nt CaI-C]
[KRRoR 5-

don’t care [IF’ !norrnal]
[S1:,’3’ dor]t_ca~c]
[IA[{F:I, any valic] sort or-cler]

i
MF:SSAGE 5

IZrr-or Mcssaye #5: sort C)rcler was not set
A
* HXP1,ANATION:
*
* The “askerldjng’r arlcl “clesccnciing” values wi 11 hc

.JMEI - 19

A used c]rjl y when tile ~~ost-c.orl~ii t i ons “si zc ok” ar)d
* “mi n rllax” have! 1.)(! (!11 SI:’1’ hy I_ he us<! of Otllcl V? I]LICS irl
* one o~ n~c)re ciiffclcrlt catego~ics spccifieci in t}ie
* lRII file.
* The usc of “asccnciinq” will SF:’1 the “ascenc~” ~r-ld
* “normal “ l)ost-corldit_j ens. Also, tt)e “ascenc ii ng”
* samp]e value will be usccl a rr~axirrlunl of 10 times.
i
* The) use o f “ciescollcli ny” wi 11 SR1’ the “cicscend”
* and “normal “ lJost-corldit iorls. l’hc!re is no I,IMJ’I’
* on the number of tin(cs the “cicscencling” sanple
* value can be useci in the test cases.
*
* Both “ascending” and “descending” will have the
* label “valid so~t c)rcle~” listed in the resultir,g
* test cases when these ptirtitic)n values are used.
*
* ‘rhe “unspeci fieci” sample value. will be usc!d in a
* test case cln]y if the “all normal” post--conciitions
i was set . This sarq)]e value will only be used once
* arid the 5Lh cr-r-c)r message in the message list will
* be printed Whc!n this samp]c! VZ1]LIC! i s usc.ci. lhc!
A “dent care” post corlciition will be set .
A
* T’he “ctc)n’t cal-e” value will c)n]y b(! used if the
* post-conciitic)n “nornml” is NOT SF:l’ by any other
* sample value; it’ s use will SF:I’ the dent care
* post-condition. ~’here is no l,IMIT on tt!~ nurnt)cr”
* of times the “dc)n’t ca~e” Sanpl c value can be used
* in the tc!st cases . l’tlis sarn~)]e value will have
* the label “any valid Sclrt C>l”dc!r” when it is LISCd.
i

4.2 Nxample ApplicaticJrL of Category–Par titic)n Method with TR1,

In this section, the same example from section 3.2.? will be cliscusseci, but this
tirnc!, the Test Representation I(anguage (TRI,) will he Llseci. T O avoid cc)nfusior], LIIe

proceclules for- creating a Lest design using TRI, are referred to as stages, and the
~)rocedures fo~- irrpler~(er~t_ing the categc)~y -partition rl~ethc,d a~e referreci to as steps .
l’hcse stages will be perfc)rrrled for each functic)nal unit arlcl/c)r test c)bjective irl ttle
systcrn under test.

4.?..1 TRI, STAGE 1: Uncc)ristrainect Rcprcscntation

The first stage in the T’RI, procedure is to create an ur~cc~nstrainc!d re~)reser]tatic)rl of
the test ciesign. l’his is accomp]ishecl by l)erforrr(ing t-he fi]st 3 steps in the!
category-partition rnethoci:

step 1: F$unctic)nal Decom~)c~sition (section 3.2.?.1) ;
step 2: Category Analysis (section 3.2.2.2); anti
Stc!p 3: Partitic)n Value Analysis (scctic)n 3.2.2.3) .

As fo~- creating a TR1, F’i]e, the fc)llc)wing Y’RI, keywo~cis anti inforr[(ation should l>e
c~-catcci:

a) DESCRIPTION Keyword and the description block. Create a c]escriptic)r]
block that contains the requirements to he tcstccl, the pass criteria to
be used, and any other ~>ertirler]t irifol-r[mtion LC) the test cicsigrl.

k)) PARAMETERS Keyword. Start tile l~ararr@tc!r
c)

sP~cificatiorl ~)lock.
TYP13 Keywords and NAM3 Keywords. E’or each type of parameter anti cateqoly
icientified in Step ? c>f the cat_egc)ry-l)al tit_iorl n~ethod, create a TYPF: anti
NAME sF)ecification in the ‘1’RII file.

d) SAt@I,ES Keywords and the partition values. E’OL each category, adci in the
unconstrained partition valuc!s ttlat the category can assume ciuring a
test .

JMH - 20

Fxarq)le:

*

DljSC~lE>T1oN
*

k’unctional Unit: Sort an integer arlay either in ascendincj or
dcscerlciixly order.

i
E’ARAMF:TE;RS

*
TYPE

i
‘.I’YE’F

+
‘1’YE’E:

A

lrlput-Categc>ries for E’arametcr: Al-ray

NAME array siz.c
SAMPI,F:S

o
1
2 to Upper Bound minus 1
Upper ~~urld
greater than

NAM? array values
SAMF’I(KS

all O’s
all the same
all negative
all positive
mixed +/–/0
don’t cal-e

Upper Hound

but not O

NAMF, value arrarlgemerlt_
SAMP1(F:S

minimum before maxirnurn
rnaxirnum before rninirrlum
cicjn’t care

input-~’arameter: Sort orde>

NAME sort order
SAME’I,KS

ascending
descenciing
unspeci fieci
don’t care

Output Lc) prc)gram

NAME; result
SAMPI,KS

or challqe in state

error notification
array unchanged
array in ascenciing o~der
array in cic,scenciing orcicr

* (!rid cjf file
*

Nc]te that this exanple with the unconstrairlcci rcljreser]tation wc)ulci produce 1440 test
cases.

4.2.? Till, STAC;E 2: Error Constrained Representation

The second stage of this process is to acici in the err-or inciicators and the! rr~essage
clescription.s. l’his correspc)ncis to a l,cjrtic,ll c)f the fc)urth stc~) in the categc)ry-

JMtl - ?1

~)artjt_joll n~cthod: the part iti ori constlaillt al]alys is.

‘1’he follc]wing keyworcis arlcl inforrnatic]rl shcju]ci be aclclcci tc) the TR1(file:
a) ERROR field keywords. F’c)r each paltition va]uc that Shc,ulci laise ar

exception during testing, create an [ERROR] field and acid it to the test
design.

b) Message keyword and error message list block. E’or each ERROR fielci, make
sure the~e is a cor]espc~nding err-or message in a mc!ssage list block.

See the exarrmle for TRI, STAGE: 4 fcjr an illust~ation. Wilen the er~-c)r indicators are
aclcied

4.?.3

to the’ 3 partitic)ll values as ir]ciicateci hc]c)w, 651 test cases ~csu]t :

CateqQ~__ ~ytition V?~&l..Q
array size o

E’ielcis. .. — . .. —.—. ——
[E’:RROR] . . .

a~-~ay size greater t_han Upper Ilc)unci [ERROR] . . .
sort c)rder unspeci fieci [1’:RROR] . . .

1’RI, STAGR 3: Conditic)n Cc)nstraineci Rc~.,r-c)ser)tatic)rl

l’he third stage of test design creation using TRI, is ~)rohably the most clifficult and
time corlsur[ling. Adding in the conditional statements to n(ake SUIC, that_ only the
technically feasible corrhinations of partition values get produced in the! resulting
test cases often takes rrmny iteratic)ns. investigating exactly which cont)irlatic~ns arc
valid when used together ar]ci what- the expcctcci outputs c>f ttle systen(shou]ci be c~rl
expc)sc many incor]sistencies and uncic)c. urncrlteci rec~ui rcr((er]ts .

This stage, similar to the l)revious one, cor-rcs~)oncis tc) the fcjurth step in the
category-partition method. The purpose of this staqc is to ciete~rnine the prc and
post conciition pairs that. cicscrihc the behavior c)f the systefr(under test .

TO modify the existing ‘1’RI, file so that the conciitions are ex~)~esscd, the SRT anti IF’
field keywords must be adcieci. Tllc~-e will he sor(@ c)ccasiorls wtlerc the aciciitic)r] of
“cion’t care” ~,arti~ion values, or even the adciiticlrl c~f reF)eat partition values with
different conditions] fields attached, will lIC necessary in order t_cr ~>rc)duce the
optimum set of I-esulting test cases.

The following keywords anti info~mation shc)u]ci k)e acicieci tc) tk]e l’FLll fi le:
a) SET field keywords and post-conditions. F’ol each partition value that

shc)u]ci cause a post-cc)nciitic)n tc) exist if it is useci in a test Ca set
cleate a posi--conciitic)rr value arlc] a~>~~cn(i it tc) the insicic of the [SF:l’]
field. Use a logical AN[) chdlacter, “,”, tc) separ-ate n[ulti~)le pc)st-
conciitic>ns.

b) IF field keywords and pre-condit.ions. F’ox- each partitic)n value that is
valid only when cc)mhir)cci with a }~:irticular part itic~n value. ir] another
category, append the conciitic)n value tc) the inside c)f the [IF’] fielci.
Use a logical ANI) character, “, “, tc) sc~)al-ate multiple pre-cc)nciitic)ns; a
logical NOT character, “!”, in fror,t C)f a cc,rlciitic)r, exl]l-esscs tilat a
condition should NOT exist in orcier fc)r the F)articula~ partitic)rl value tc)
be used in a resu]tir]g test case.

Agairl, the reader should be rcfe~red tc) tile staqe 4 ciiscussic~n irl scctic)n 4.2.4 for
an examp]e that has pre and pc)st cc)nciitic)ns. E\efc)rc the I,IMIT fields are acidecl to
the ‘l’RIJ file in stage 4, the TR1, lesu]ts file cc)rltairls 32 test cases, whict] together,
rcpleserlt the comp]ete functionality c)f the requirer(~cni_ k)eirlg testeci in this
functic)na] unit. The purpose of the fc)urttl stage is tc) rcciuce t_he nurrtmr c)f test
cases even further so that testir!g c~f t}lis furlctic)llal unit takes less resc)urccs.

4.2’.4 TR1, STAGE 4: IIimit Const~aint Re~~:eserltatic~r]

This final stage of 1’RI, file cievelo~m~cnt prc)cluces tile l,irr~it Cc)rlstraincd
Representation c~f the test clesigrl. As cxplaincci in the cicscriptic,n of the I,IMIrI’
fielci keywol-d, section 4.1.3.3, tt]e purl)ose of t)lc IIIMI’I’ field is tc) specify how many
times a pa~tition value can he used in tl]e resultirlq set c)f tc!st cases. Setting

t}lese lir[~it vaJues cc)rres})c)rlcls tc) f-he last stc~), C) I- sub- ste~~, c)f ttle catrg Orv -
~)a~titiorl rI(ethc)ci, where i_k)e rer([aillilly E>al titiorl value const rajr)t s ale (i<telr[[~ r]cd .

Alscr included in this stage is the labeling of tllc partiticrn values. ‘1’k)c purpcrsc C)f
the labe]s is to provide the test engineer, who is Fmrfor-ming the tc!sts c)r
transforming the test cases int_o Cietaileci proceciures, as much irlforr[katic)n about tl]e
test case as possible. The labels r-ecorrrmncicd are ones that ciescribe the I)artition
value in terms of its range, sLIch as “normal”, “low bourlc]ar-y”, “high out-of-bounds”,
c!tc.

The~efore, Lhe following keywords and information shc,uld be added to the test cles:~grl:
a) LIMIT field keywords. ‘i’or each partitic)n value that should c]n]y be usec]

a certain number of times, n, in the resulting test cases, c-rc! ate a
[LIMIT n] field. Note that partition values wit-h an [E:RROR] fielci ale
automatically limited to 1 test case.

b) LABEL keywords and label text. E’or sor((~ Or all c)f the partitic)n values
in the 1’RI, file, add a [I,AI)KI, label_tcxt] fielci such that t.l,e
“label- text” provides a description crf the partitic)n v:ilLIe that will km
useful Lc) tile othe.1 test engineers.

The example given in figure 4-2 prc)ciuces 24 test cases when prcjcessed by the TI{l,
Tc>ol . k’igu~e 4-3 gives an excerpt c)f the first two test cases from the resultirig
test cases produced by the TI<I, LC)OI frc,r[(the 1’RI, test design clocumerlteci in figule 4-
2.

Figure 4-2 Stage 4 Example of TRL Test besign

.****AA*.*** *****A****, ****..,..*.. .**.***.,*** .**.. *.*..*.*..
* SI’A(; I, 4. A[)[) [11!+11] AN[) [!AEiF~.] EII:IDS .
* tc> [tic I’KI F’ilt>
.A*..,**,,** *+.A**,,*** ,,,,..,..,. * * . * * * * * * * * * * * * * * * * . * . * . * . . * . * . . * . * . * *
*

D};SCKII’I’l ON
*

l’cst
F’ilc
Vc’rs
last

Modj

UC’~>rC’SCt)LaLlOr) f o r S01<1’ recl[>jrcncr]t.
Name: Sc)l<’1 . ‘1}{],
or!: 1.5 F,rrc)rs/Mcss<lcjc:./COr)dj Ljor)s/I imi::+/lak>cls
Mc)dif~cd: 9/4/91
ied Iiy: J . tl[)~)s

1 (dcyer,erate array)

? to U~]Jwr I<clt]r]d mi rILIS 1

Upper IIound

qre.ater thar) UpI,cr !<c>LJrid

.

MI:SSAGI: 1

tJMH - 23

n,i nin,cln, hc fore max [1[’ size c)k, not icicnt ical]
maxi murv t>eforc n,i r) [IF” si~e c)k, r)c)t ldcr) tica] I
dor,’t c a r e [Ii’ !rlot id;rltic.al]

*

1’YI’F i n p u t - I ’ a 2 a r u e t e r : S o r t Order

NAN1: sort ordc,r
SAMI’1}’S
*
i 3 Fjartjtic,rls, 1 dorjft care
*

IF’ size, n k , rjot ider, t
If” siz{” o k , r)ot” iderlt
[It’ sI?i, o k]
Sk”l’ err[lr , d(, nt c’:, rc]
1[’ dor,t car t.]

(’al] [Sl,l’ .asccnd]
cdl] [S1’1’ d(sccr,d

ar ray ur~ct, anqed [IF’ Cic, !)t <:)rf, !r, c,t icfcr,t jc.; ,]]
array ir~ ascer>dinq ordvr [IF ,i:.ct,r)d, rtot]dc, r)c:c C31 j

array i n dcsccrlciir\cJ o r d e r [1!- dcsccr, d, r[(,t lrier)[]e,aj
,

Figure 4-3 Test Case Results of Stage 4 Example of TRL Test Design

[lescri F,ticlrl:

l e s t t< Cflr CsCr!ta Liorl fclr S0}{1’ requi rcmer~t .
File N a m e : SC)R1.lRI,
Versiorl: 1 . 5 F:rrc,rs/Mes::acj<5/Cc>rc;]t,c,r:/ Ijn,jt:,/:at,els
las L M o d i f i e d : 9/4/91
Mc,difjcd Fly: J. tlc)ps

************** ****h*****.*** ******

Case # 1
latw] : 1 .6.3.4.1

I’Al<AMtTRRs :

l’y~lc :]rl~)LIL-~atcCJClr IC)s fcr f>alamrLcr: Arr.Iy

C’atcgory Narme: array s~ze
l’artit~c,n Vall)e: O (a r r a y L]r)s!(ciflc<i)
f’arLiL i or, l.~k>cl : Crr(, r Ccll$diLic>r)
ltcration rlun,t,cr: 1

C’.aLc$qory Narm: a r r a y val~]es

l’artitic,n I,ahel: instar] c-e valtlc rIc,cdc~d tc [lass t,rror

1 y~w: OuL1,ut tc, {>rocJ ran, o r C’k)a I)CJ~ ir) sLalc

C’ateqory Nan,e: rcsu]L

i>ar(itiorl Value: c.rror not.i fic.atic,r~
Partitior) l,ahel : ir)stancc v.al[]c rlecdcd tc, ~},ass er rot

Frror I l l : A r r a y si~c of O i s inva]id or a r r a y sjze]:, (lr,s~,ccificcj.

****h*i**+**+ **********AA* *,*..**,

C“lsc # ?
Iatw] : ? . 6 . 3 . 4 . ?

I’AI<AMF:l’}:RS :

l’y[)e : Inf, uL-C’atr’gories for I’aran,ctc, r : Array

C’atcgc,ry Narue: array S;ZC
[’art it ion ValL1e: 1 (dcger,eraLe a r r a y)
l>arLitic,n]at,cl : Clecjrrlcratc. a r r a y

C’atcqory Name: a r r a y val L]es
f’ar L i t i or, V,aluc.: don’ t <<arc’
I’ar Litlclrj 1,.ahcl : Val]d

~dtCCJOfy Name: value arrar, qen, ent
I’ar Litiorj V.]luc: dclrl’t Ca[c
l’arLit~orJ l,ahcl : v a l i d

l’y~lc : lrr~,ut-ParameLer: Sc>rl Order

C a t e g o r y Name: sort o r d e r
I’arLiLior) ValLIc: dc,r~’t catc,
PartiLior) Ilak,cl : v a l i d

l’y})e : OuL[lirL t o ~)rc)gram or cl]ar, cJc irl st at<.

Category Name: result
l’artiLjorl ValLJe: ar r a y ur,ct~ar,cJcd
}’artitiorl Iat]el : v a l i d

No errnr cc, rldjtic, ns e x i s t .

****.**.***** ******,***,,* **.**,,,

5. Conclusion

The pu~-pose of the test design phase is tc) dcterrcrinc a set of tcchnical]y feasib]c
anti resc)u l-cc frugal test cases that meet the! test_ ohjcctives of the test p]zins anti
that verify the furlctic)rlal lec~uirerl~erlts of tllc systcn~ UIICIOI test. I’hc! caLecJc)ly-
~)artitiorl method can be used to determine test designs that meet this gc]al .

~’he Test Representation I,arjguage (lF<I,) arlci the 1’1<1, con~~)uter tool, used to prc)cess
files written in the language, h;ive pl-c)vcr] vely useful and efficierlt in irnplerucnting
the category-paltition rnethc)ci. in c)r]c ~jlojcct in ~~articu]ar at C)ur organization, the
test cases that. result from the T’RI, t_cJcjl ale! tbc!ing usecl tc, verify the system
Iequirernents in the enginc!cl ing testing stage, I)ctailccl test prc,cedures will Im
clevclc)ped bascci on the out~)ut c]f the! LCJC)I ,

As of yet, no objc!ctive data have been cc~llccted that can be Llsed to cc)rn~~are the
r-esults c)f the testing prcrcess changes intloc]uceci by the use! of the TRIj tool .
Ilc)wever, the c~ualitative fec!dt:mck ~eceivcci frc,n] bc)th test engineer.s and software

.

JMEI - 25

#
. clesigrlers is L}lat tile cateclcjry-~)art it ion Iiict hod arlci t }1<, ‘l’t<I, (C)ol ILQIIJ Lt]err! enqirlef:r

tests ~ather than just pcl-fc)rl(~ tests. ‘Ytlc ef fccts of the r[iettloci anti t}le tool r[kiy t.w
hZLrC] tO ~LIEin~ify C)I1 EIrl C)IICJOirl~ ~)IC)~C’Ct . A way Cc)ulci llE! fc)urlci tc) detCrI[1i11f2 LiIesc
effects if a small, ccjntrcrlleci c;isc stuciy wele to he ir]itiateci where 2 glcju~]s ~x,rfo~i[(
the same job - one using ‘l’RII and the categol y-~)artitic]n methc)ci, and the other usirig
neitl)or .

Wo~-k is cc)ntinuing in enhancir]g the ‘l’RI, Loc]l to nlect the neecis of the test enqirlee~s
using it. Some keywords are being actciecl to allow sc)ruc vc~y fine tuned control over
which test cases get inclucicd in the results. We ale alsc) looking i~ltc) an
enhancement of the out~)ut capabilities.

Irl summary, the purpose and requi~-ements of the test dc!sigr] phase of the testing
lifecycle have been explol-ed and cicfined. l’hc catego~-y-~~a~-t itic)n rr~ethoc] and the :1’RI,
tool are efficient ways to procluce the test designs anti resulting test cases rleecied
as irlput into the following phase of Lhe testing lifecycle. The T’est Rcplescntatiorl
],anguage and the l’RI, tool can be c)f use tc) the test engin~er c)r ~)rogr-armlcr nc) nlatter
what level of testing is being perfc)rmed. More effort shc)u]ci be p]acecl in gathering
the necessary metrics to be able to quantify the benefits received from implc!mcnt.ing
this process. lf qualitative results are erlougk], hc)wever, r[lc)st organizations cc)LIld

pr-c)fit frcml an irfif)lc~r(l~rltatiorl sin~ilar to the ‘1’R1, tool and the category-l)artiti on
methoci fc)r bridging the gap between test rec~ui remc!nts and test s~mci f i cat ions .

ACKNOWIJEDGEW.NT S——.—.——-..——.

‘rhe research described in this pal~er was Carric!ci C>ut by the Jet E’rc)l]ulsic}rl
Ilaboratc~ry, California Institute c)f l’echnc)logy, ur!cic!r a contract with tl)e Natic)rla.1
Aeronautics and Space Administration.

RJIFERJINCES.—

1.

2.

3 .

4 .

5 .

6 .

“1 .

Balcer, M.J., IIasling, W.M., and Crstlanci, T.J., “Autorl~atic gerle~atic)n of test
scripts frorr~ formal test specifications”, ~c)r(u[,~lrlic:,tior)s of the ACM, .JLIrIe

1989.

JPI, Softwale MarlaqenfLcrlt Stanciaxcis I’ackaqe, Vczsic>n 3.0, JPI, 1)-4000, Deccr{J)c.r
1988, JE’1, internal Document.

Military Standard Defense SysterrL Sgftwar”g...l)_cvlo~g (~r&,&, IjOLJ-Sl’LJ-?16”/A, F’ebruary
1988.

The Art of Softwal-e ~’esti_rlq, Wiley Ser-iesMyers, G.J., __ in Businc!ss anti Ilata
Processing, John Wiley ancl Sons, 19”/9

Crstrand, T.J. anti 14alcer, M.J., “The catc!gory- part-itic)n r[~ctilc)ci for specifyillq
anti generating furlcticjrlal tests”, ~or(~!(llrlic~tic)l”ls of tl!e ACM, Vc~lurlK! 3] Nur[l 6,
June 1988.

Richardsc)rr, D.J., O’Mallcy, O., ancl Tittlc, C., “A1)l)rc)acllcs tc) specificatic)n-
bascci testing”, Corrrmunicatiorls @f the ACM, June 1989.~—.————. .—_— —

Weyuker, F:.J., and Ostrancl, ‘l’.J., “1’tlcories of ~jrograru testing and the
application of revealing suhcic~mains”, IP:EF: ‘J’ransaction.s c,n >c~ftw~>-e——-— ..— — . ..— .—. . ——.
Hnqineerinq, Vol . SF:-6, Nc).3, May 1980.

JMII - 26

